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Abstract

Bridging the gap between models' predictive power and interpretability is one of
the key problems in modern predictive analytics specifically in insurance. Despite
the availability of more performant Machine Learning (ML) tree-based models,
less predictive GLMs are still a go-to method due to their explainable nature. We
propose a novel method for ensembling GLMs and GBMs and transform the
state-of-the-art interpretability technique — SHAP. The resulting ensemble model,
Interpretable Boosted GLM (IBLM), retains the linear formulaic representation
and provides a set of per-observation parameter corrections. These corrections
help modelers understand how the ensemble deviates from the underlying GLM
while improving its performance. The linear architecture of IBLM allows insurers
to easily implement it into the existing rating structures, reducing or even
eliminating friction costs of its implementation. The SHAP-corrected coefficients
enable familiar interpretation of the rates for customers and stakeholders. Most
importantly, the transparent nature of IBLM allows insurers better assessment of

the risk they are exposed to.

Keywords: Generalized Linear Models, Regression Models, Interaction
Effects, Ensemble Methods, Shapley Values, SHapley Additive exPlanations
(SHAP), Interpretability, Explainable Al (XAI), XGBoost, Tabular Data

1 Introduction

Gradient Boosting Machines (GBMs), in particular eXtreme Gradient Boost (XGBoost), have
consistently outperformed traditional statistical models and neural networks on tabular data.**
Despite the maturity of reliable interpretability techniques such as SHapley Additive
exPlanations (SHAP), the adoption of these more performant models in insurance remains

slow, with transparency frequently being a key barrier. In insurance, tabular datasets are the
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norm, yet the adoption of advanced Machine Learning (ML) models such as tree ensembles
or neural networks remains limited. Despite their success in other domains, neural networks
in particular, often fall short in tabular data tasks, where tree-based models like GBMs excel.!
This performance gap is largely due to the inherent properties of tabular data, which presents
challenges—such as irregular patterns and the presence of uninformative features—that
tree-based methods are naturally adept at handling.! In contrast, neural networks struggle
with these complexities, making tree-based models the more reliable choice in many financial
applications. On the other hand, Generalized Linear Models (GLMs) have long been a
cornerstone for predictive modelling for financial applications due to their simplicity,
interpretability, and relatively strong performance. They are widely used because they offer a
clear formulaic structure that is easy to explain, aligning well with the regulatory
requirements and professional standards in the industry.’ Furthermore, GLMs are a familiar
tool in actuarial science, often featured in professional exams and applied in real-world risk
assessment models. However, while GLMs offer great transparency, their predictive power
can be limited by their rigid structure. Non-linearity is typically modelled through variable
transformation before estimating the coefficients of the linear equation so the scope of

capturing non-linearity is not straightforward.

In actuarial data science, there has been a marked increase in interest in the application of
machine learning, with commercial adoption often facilitated by software vendors (e.g.,
Akur8, Quantee, Optalitix) offering either Al-augmented GLM methodologies or fully
machine learning—based models aimed at improving current modelling practices. The
problem of bridging the performance—interpretability gap between transparent statistical
methods and more powerful but opaque machine learning models has received sustained

attention from both practitioners and academics.®’®

In summary, both GLM and ML have several weaknesses and strengths: GLM is easy to
construct and interpret and fits well into the existing rating structure that stakeholders are
familiar with. However, GLM struggles with non-linear data patterns without prior data
transformation, often resulting in lower performance compared to ML models. Neural
Networks may offer superior performance compared to GLM, though NNs are not adept at

handling tabular datasets and may fall short in comparison to Gradient Boosting Machines
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(GBM).! The standard NN is opaque and difficult to interpret but some architectures, such as
localGLMNet, are more interpretable.’ Despite recent developments, all NNs variants suffer a
major practical weakness: they require significant effort to configure to realise their full
performance potential, and the associated cost and effort of implementing them often negates
the performance improvements, rendering this model class less favoured in actuarial and
insurance applications. GBM, in particular, XGBoost, has become a popular tool in recent
years, due to its relative ease of implementation, and superior performance — especially with
tabular data.'? The only potential drawback of the standard GBM is its need for separate
explanatory Al methods to attain interpretability.

This paper proposes a novel model Interpretable Boosted Linear Model (IBLM) that retains
the strengths of GLM and GBM, while addressing their limitations: IBLM retains the
interpretable nature of GLMs but adds flexibility to improve predictive accuracy. We build on
the formulaic structure of GLMs by allowing the coefficients to vary locally for each
observation, akin to the concept behind LocalGLMnet where output can be interpreted as an
individual linear model adapted to different data points.® However, unlike the approach in
LocalGLMnet, our architecture starts with a set of coefficients from a pre-existing GLM and
generates a set of deviations (beta-corrections) that offer a better overall fit, while ensuring

the combined model remains grounded in a familiar and linear closed form expression.

To achieve that, we introduce a residual modelling approach where a more flexible,
non-linear model predicts the errors of the underlying GLM. This is the principle underlying
boosting ensembles, thus we will refer to this residual model as a booster. While residual
modelling itself is not new, our key contribution lies in how we utilize SHAP values within
this framework. Rather than using SHAP exclusively to explain the residual predictions of the
booster, we leverage it to correct the GLM coefficients. This allows us to combine the
transparency of GLMs with the superior predictive power of machine learning models,
addressing the long-standing trade-off in financial data science between model

interpretability and accuracy. Our proposition leverages GBM in place of the residual model.

As we will demonstrate in more detail, our proposition allows for a smooth transition from
statistical modelling to building ML models, which is a key consideration in practice. Our

method can be used as a standalone predictive model or in a model development cycle, where
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the residual model informs the modeler about non-linear effects and interactions that may not

have been captured in the underlying GLM.

Organization of this manuscript. Section 2 is a formal introduction of the building blocks
of the IBLM architecture — GLM, GBM, and SHAP. We then introduce IBLM along with
beta-corrections and their interpretations in section 3. In section 4 we demonstrate real-world
applications of IBLM and compare it to the underlying GLM to assess the uplift in
performance, and to XGBoost as the top performing predictive ML model. We also discuss
the practical interpretation of beta-corrections and how these insights can help insurers

manage risk in their portfolios. Finally, we conclude in section 5.
2. Constituent models and SHAP introduction

This section is arranged as follows: section 2.1 introduces the starting point of IBLM — GLM.
Section 2.2 introduces the basic GBM, and an improved implementation of GBM, i.e.
XGBoost. Then section 2.3 introduces SHAP which is the explanatory technique that

produces Shapley values to correct the coefficients of IBLM.
2.1 GLM

The GLM was first introduced in 1972 as a class of models to predict a response variable
with a distribution from the exponential family including Normal, Binomial, Poisson, and

Gamma distribution.'” GLMs have three core components:

(1) A random response variable y whose distribution belongs to the exponential family,
characterized by a canonical parameter 0 and a dispersion parameter ¢ with
a(¢p) > 0 For a fixed ¢, the distribution is fully specified by 0. The parameter 0 is
the canonical parameter.

(2) A linear model where the response variable y can be linearly represented by a set of
independent variables or features Xy oo X in the form of:

d
n=B,+2Bx

jo1

where [31, o B jare coefficients to be estimated and BO is the intercept.

(3) A link function g that connects the expected value of the response variable in (1) to

the linear predictor n in (2) :
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g =n
When g corresponds to the canonical link of the exponential family distribution, p is
the mean of the random variable y in (1) and the linear predictor 1 is directly related
to the canonical parameter 8. The choice of link function depends on the distribution
of y with log-link being the most popular choice.! For example:
e Poisson and exponential distributions often use the log link.
e Binomial distribution often uses the logit link.

e (Gamma distribution often uses the reciprocal link.

It is worth pointing out the resemblance between the linear equation describing the local
accuracy property of SHAP we introduce next and the linear equation describing the second
component of GLM. This resemblance allows the coefficients of the Interpretable Boosted

Linear Model to be corrected by SHAP. This point will be discussed in section 2.3.
2.2 Gradient Boosting Machine and Extreme Gradient Boosting

Gradient Boosting Machines (GBMs), introduced by Friedman, is a flexible framework for
constructing predictive models through stagewise functional optimization.'? In this setting,
we consider a response Y with conditional mean p(x) = E[Y|x], modeled via a predictor
function F(x). The GBM framework aims to approximate F(x) by iteratively combining base

learners, typically regression trees, in order to minimize a specified loss function.

Formally, let L(y, F(x)) denote a convex loss function. The gradient boosting algorithm

constructs the predictor as an additive model
M
F () =B+ ¥ vf (0
m=1
where fm are base learners from a restricted function class F, v €(0,1] is a shrinkage

parameter (learning rate), and M is the number of boosting iterations. At iteration m, the

algorithm fits a base learner fm to the negative gradient of the loss with respect to the current
model:

Tim = T(;L(y ¢ F(xi)) |F=Fm_1(xi)'
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for observed data (yl, , xl,) The learner fm is chosen to approximate these residuals, and the

model is updated via

Fm(x) = Fm_l(x) + vfm(x).

When the loss is the squared error, the updates reduce to fitting regression trees to residuals,
which gives gradient boosting its interpretation as a sequential residual fitting procedure. For
distributions commonly used in actuarial modeling—such as Poisson, Gamma, or
Tweedie—the natural choice is to use the corresponding likelihood loss together with the

canonical log link. In this setting the mean satisfies um(x) = exp (Fm(x)) and the update

takes the multiplicative form

b, (@) =, (dexp (vf, ()

Thus, gradient boosting can be viewed as either an additive ensembling scheme on the
canonical scale F(x), or equivalently as a multiplicative ensembling scheme on the mean
scale p(x). This dual perspective highlights its flexibility in capturing nonlinearities and
interactions beyond the scope of generalized linear models and is fundamental for IBLM

architecture.

XGBoost is an implementation of GBM with a few additional technical advances to reduce

overfitting, to handle missing data efficiently, and to improve computational performance.

One of the key improvements to the GBM is that XGBoost adds a regularisation term to the

loss function that penalizes complexity of the model so the new loss function Ll(y, F(x))

becomes:

L(y, F(x)) = Ly, Fx) + YT +—=Alwl’.

where T is the number of leaves in a tree; w the leaf weights; yand A are user-defined
hyperparameters of XGBoost. If y and A are both zero, the loss function is effectively the
same as the basic GBM.?

In addition to the regularisation term, XGBoost uses several other techniques such as
shrinkage and column sampling to reduce overfitting. While each technique on its own may
be used in other ML algorithms, XGBoost uniquely employs a combination of all three that
reduce overfitting more efficiently than the basic GBM. XGboost also improves performance

through the optimal split when dealing with missing and scarce data that are often present in



real datasets. Lastly, XGBoost has several computational advantages such as parallel
computation that makes the model converge faster. These design and technical advantages
allow XGBoost to outperform other machine learning algorithms on many large,
high-dimensional datasets with missing values, so we chose XGBoost as a constituent model
of IBLM. That said, we want to emphasize that XGBoost could be easily substituted with

another booster model, such as the basic GBM or even NN, if deemed more suitable.
2.3 SHAP

SHAP stands for SHapley Additive exPlanations. It is based on cooperative game theory that
guarantees a unique attribution of contributions of each input variable. The SHAP technique
has become one of the most popular explanatory methods since its introduction in 2017."
These contributions can be summed to produce an interpretable decomposition of the original
prediction. For a simple linear model such as GLM, the outputs are easy to interpret, so the
best explanation is the model itself. For complex non-linear models such as XGBoost or
Neural Networks, the outputs are not easy to interpret, so a simpler explanation framework

such as SHAP is needed.

SHAP is the adaptation of Shapley values. In a regression context, the Shapley value of

feature X; is the weighted average of the difference between conditional expectation on subset
of features including X; and conditional expectations on all subsets excluding X It is

calculated as follows: let S represent a feature subset S € F where F is the set of all features.

A model f5u 0 is trained with feature X; present, and model fs is trained with the feature X;
withheld, i.e. a subset S excluding X Then, the difference between predictions from model

f sug) and f ¢ is computed. Since the effect of feature xj depends on other features in subset S,

we need to compute all the differences between fSU 0

excluding X that is S €F \{j}. Shapley value of feature X, denoted as cl)j is then the weighted

and fs conditioning on all the subsets

average of all possible differences. ' Formally, Shapley value of a covariate X; is computed

as:

_ S|!(|F|=[S|=1)! _
q)j - SCzF:{j} |F|! Su{j}(xSU{j}) f S(xS)]
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where F is the set of all features and S represents a subset S € F and fs is a model f trained

only on the subset S.

Retraining f s for all possible permutations of S is computationally inefficient, and SHAP is a
way to approximate cl)j without loss of its desirable properties. In practice, SHAP decomposes

an output of any model into the contributions of its input features, where their directionality

and magnitude indicate their impact on the overall prediction.
d
9@ =, + % & @
j=1

Where g(x) is the models’ prediction at the link function level and cl)j (x) is the contribution

of feature x]_.

Now we list the properties of SHAP that make it a desirable and reliable model explanation

method:

1. Local Accuracy: the decomposition is exact, i.e. the prediction equals the sum of all

contributions plus the baseline.

2. Symmetry: if two features contribute identically across all coalitions, they receive

equal attribution.
3. Dummy (Nullity): a feature with no effect on the prediction has zero contribution.

4. Additivity: attributions are consistent across models, allowing linearity of

explanations.

5. Model-agnostic: SHAP values can be computed for any predictive model by
evaluating the contributions of each feature across all of their possible subsets. In
practice, exact computation is combinatorially expensive, but specialized algorithms
exploit the model structure to improve efficiency. For instance, TreeSHAP leverages
the hierarchical structure of decision trees to compute SHAP values in polynomial
time, making it particularly suitable for tree-based ensembles such as GBMs. This
allows the additive decomposition to be efficiently obtained even for complex models

while retaining the interpretability guarantees of the SHAP framework.



It has been demonstrated that SHAP is more accurate and consistent than other explanatory
techniques.'* As discussed in section 3, under the Interpretable Boosted Linear Model, SHAP
values are used to correct coefficients of GLM, so these desirable properties are especially

important.
3. IBLM

3.1 IBLM definition

The main aim of the Interpretable Boosted Linear Model is to achieve superior performance
compared to a pure GLM, whilst maintaining a linear architecture, making the coefficients of

the ensemble model easy to interpret and explain.

In this paper, we propose the Interpretable Boosted Linear Model (IBLM), which combines a
GLM with a tree-based booster such as XGB, leveraging the superior performance of tree
ensembles on structured data. The GLM serves as the primary predictor, and the booster is
trained to model its residuals using the same input features. The ensemble output is obtained
by aggregating the predictions of the GLM and the residual model, either additively or
multiplicatively, depending on the response variable. SHAP values from the residual model
are transformed into adjustments to the GLM coefficients, referred to as beta-corrections.
When the residual model is predictive, this results in an ensemble that is both highly

performant and interpretable within a familiar linear-model framework.
Lemma (SHAP decomposition as a linear predictor)
Let Yy be the residual predicted by the booster model, and let

d
Y= @,(0) + El ¢, (x)
be its SHAP decomposition, where q)j(x) is the SHAP contribution of feature X,

This can be approximated in a locally linear form as

d

a(x)x.

e
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Where 6 > 0 guarantees numerical stability if |xj| < &. This representation highlights that
SHAP can be interpreted as a locally linear model, with feature-specific coefficients (xj(x)
that vary with the feature vector x.

Definition (Interpretable Boosted Linear Model)

Let x = (xl, ey X d) be the feature vector, g the link function, @ = E[Y|x], and let the GLM
and booster components W G(x) and uB(x), respectively. Then the IBLM models the

canonical-scale predictor as:

d
9(100) = g (ke Dpp(0) = AC0) + Z (8;+ @00

baseline =1 adjusted coef

Which can be written as:

d
9(1(0) = 2@ + Y @@

=1
where:

o Alx) = BO + q>0(x) combines the GLM intercept BO with the baseline adjustment

d)o(x) from the booster,
* Bj are the original GLM coefficients,

° aj(x) are feature-wise corrections learned by the residual model.
° aj(x) =B + aj(x) is a final corrected beta for a given observation
)
This formulation preserves the additive structure of the GLM on the canonical scale, while
allowing flexible, nonlinear adjustments through O(]_(x). For links such as the log, this also

corresponds to multiplicative adjustments on the mean scale, giving a unified and

interpretable representation of the combined model.



The IBLM architecture and crucially (xj(x) can be obtained using any state-of-the-art
predictive model, given ®; estimation techniques that are model agnostic like kernel-SHAP."

We comment on the practical aspects and interpretation in the section that follows.
3.2 Beta-corrections interpretation and practical consideration

In many ways the interpretation of beta-corrections will be similar to that of regression

attentions of Local GLMNet. The main difference here is that aj(x) are anchored in Bj thus

they can give feedback as to the fit quality of the underlying model and inform of signal not
captured therein. Thus, IBLM can be used either as an interpretable architecture enhancing a
pre-existing GLM, or in a modelling cycle where the booster informs about areas of
underperformance of the base model. As the GLM iterations improve, the interpretable
component explains more variance, leaving only complex patterns for the machine learning

booster to capture while transparency is maintained.
We list properties of beta-corrections below:

(1) Goodness of fit: if ocj(x) < gor similarly SE (Bj) > (xj(x) indicates that the underlying

GLM captures the signal from X; sufficiently well and that there are no strong

interactions effects involving X,

da (x)

J

0x.
J

(2) Nonlinearity: ~(0 over the range of X indicates a linear relationship of the

target variable with X Otherwise, the non-linear signal has been captured by the

booster.
. da(x) L . . .
(3) Interaction effects: Tzo for k#j indicates lack of interaction effects or otherwise,

k

they are captured by the booster.

(4) Treatment of the intercept: When any categorical or binary variables are not used,

term A(x) can be dropped and replaced with a constant A as a sum of BO and a
constant @ SHAP bias. Otherwise, Ai(x) for an observation X, is the sum of its ocl,j(x)

for reference levels of categorical/binary predictors.

' Molnar (2019)



Points 2 and 3 are specifically interesting when utilizing libraries like XGBoost which let the
modeler control interactions and introduce monotonicity constraints. We will expand on that

in the next section.

The proposed architecture utilizes XGBoost implementation of the GBM as the booster for
the underlying GLM, however this need not be the case. We emphasize that the same
formulaic representation can be obtained using any model to predict the residuals, as long as
it is of satisfactory predictive performance and utilizes the same predictors. The
beta-corrections can be obtained in the same fashion. However, when it comes to estimating
SHAP, tree-based models are preferable because the computation time required is much less
than for e.g. neural networks. Which combined with tree ensembles outperforming NN in
tabular tasks, make the XGBoost an optimal choice for IBLM. What is more, XGBoost
implementation offers additional features useful in practice like monotonicity constraints,
efficient and scalable compute as well as easily retrievable SHAP values. These design
features further make IBLM applicable in practice and their impact can be viewed through
beta-corrections. We also note that standard SHAP-based variable importance can still be

used if need be.

Extending the approach to alternative residual models, including neural-network—based
variants, lies beyond the scope of the present study but offers potential for further
investigation. A promising direction for future research is to place LocalGLMnet in place of

the booster and interpret its learned regression attentions directly as ocj(x) in the IBLM

framework.
4 Real Data Example
4.1 Data overview

We consider the application of our model architecture to the FreMTPL2freq dataset, available
through the CASdatasets R package.'® This dataset is widely used in actuarial data science
literature, and we provide only a brief overview here. For a detailed analysis, see the case

study by Noll et al (2020).

The dataset consists of n = 678'013 observations and includes 12 variables, 11 of which

are predictors. Our observations are (Yi, v, xl_) where we have the claims number YiE N 0

'8 Dutang—Charpentier



exposure v, € (0,2.01] and predictors X; outlined in listing 4.1.1. The total number of

n n

reported claims is ), Y, = 36'012 with a combined exposure of ). V.= 358'499. 4
i=1 i=1

yielding an overall claim frequency of 10%.
Listing 4.1.1

e 5 numerical features: Bonus-Malus Level, Density, Driver’s Age, Vehicle Age,

Vehicle Power;
e 1 binary feature: Vehicle Gas;
e 3 categorical features: Area Code, Vehicle Brand and Region
4.2 Model Performance benchmarks

The modelling task is to estimate the expected claim frequency. Model performance is

assessed using Poisson deviance D and to compare the performance uplift against a

homogenous model we use the Pinball Score R .

Where Dm indicates Poisson deviance of a predictive model of interest and D 0 Poisson

Deviance of a null model. We split the data into Train, Validation and Test sets consisting of
70%, 15% and 15% of the total number of records respectively. Train set L consists of

n = 474'609 records and both test T and validation V of n.=n,= 101'701

We perform minimal data processing and feature engineering and will demonstrate how the
latter can be achieved further in this section, utilizing outputs of IBLM. We remark that
categorical variables for the GLM were dummy encoded and their treatment for XGB is

through one-hot encoding.

Firstly, we compare the performance of our proposed architecture against two widely used
interpretable and high-performing models — GLM and XGBoost. L is used to learn the
parameters of the GLM, XGBoost, and IBLM models. The validation set is employed for
early stopping and to prevent overfitting in the boosted models, ensuring robust

out-of-sample generalization.



For the GLM, we use the canonical log link. Both XGBoost and the tree-based booster
component within IBLM are trained using default hyperparameters, optimization of which is
beyond the scope of this study. We train the models for up to 300 rounds with early stopping
set to 25. In practice, we find that the default XGBoost parameters already yield strong
performance, which is appealing for practitioners who may be less experienced with
hyperparameter tuning; while more advanced users could pursue further gains through
optimization algorithms. The key hyperparameter values used are learnrate = 0.3;

max_depth = 6.

Table 4.2,1 presents the results of the model benchmarking exercise. We observe that while
XGBoost achieves the highest predictive accuracy, IBLM follows closely. Both models
outperform the baseline GLM by a factor of approximately three in terms of improvement

over a homogeneous model, as measured by the Pinball Score.

Table 4.2.1
null GLM XGBoost IBLM
Poisson Deviance 1.4195 1.3606 1.2386 1.2475
Pinball Score 0.00% 4.15% 12.74% 12.12%
Figure 4.2.2
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We also look at an example actual vs expected chart based on T for DrivAge in Figure 4.2.2.
Unsurprisingly, we see how on average IBLM is closer to XGBoost while diverging from the

GLM, in most of the cases fitting better to the actual observations.

The ages were only binned for better legibility. We note that for ages 84 and above, there is
very little exposure thus none of the models is very performant. It is worth observing that in
those low exposure segments, IBLMs predictions remained much closer to its baseline GLM

as compared to the XGB.

From an implementation standpoint if predictions vastly different from the underlying GLM
are undesirable a post hoc capping can be applied. Details of this approach are covered in

Appendix 1.
4.3 Interpretability per observation

We show how to investigate individual instances of IBLM. This view would mostly be useful

from an underwriters’ standpoint, or for explainability for insureds requirements.

Let’s look at an observation from T where Yo = 0.2942 and y = 0.1114 yielding a

IBLM

correction from the booster of Yy = 0.3784. For this instance, the correction from the GLM

is in the right direction as the true target value y, = 0.

In absolute terms the biggest beta-corrections are for VehAge and VehBrand. However, in

relation to the [3]_ the greatest impact is obtained for VehPower. In most cases the booster

proposes a decrease in the GLM parameters whereas an increase is suggested only for Area

and VehPower, which results in an overall decrease of the predicted frequency.



Table 4.3.1

4.4 Global Interpretability

Given the structure of the IBLM, the flow of information from the booster can be examined

in multiple ways, which we outline in this section based on T, unseen during training.

Figure 4.1.1. presents the distribution of overall corrections stemming from the booster,
which have a mean close to 1. This aligns with the balancing property of the GLM
component—on average, no systematic correction is required. This property provides a
safeguard against booster bias that could otherwise degrade the IBLM fit. A pronounced long
tail in this distribution may be undesirable in practice; the model can be fitted with this in
mind by applying a transformation to the residuals, as described in Appendix 1. Alternatively,
focusing on instances with the largest corrections can be instructive, as it highlights where the

GLM exhibits its largest errors relative to the highly performant XGBoost. Such analysis can

act as an additional validation step and help identify model points warranting further scrutiny,

Predictors | GLM coef. | Beta-corr. | Lin. Pred. | Lin. Pred. IBLM
X 8 o (B + o Xx(B+ exp(Z x(B + 0())
Intercept 1 -2.6174 -0.0053 -2.6228 2195 0.111
Region R73 -0.1669 -0.0285 -0.1955
VehAge 2 -0.0601 -0.2940 -0.7082
VehPower 10 -0.0003 0.0072 0.0691
Density 3301 0.0000 0.0000 0.0146
DrivAge 61 0.0008 -0.0017 -0.0593
Area E 0.0132 0.0003 0.0135
BonusMalus 50 0.0156 -0.0007 0.7434
VehGas Regular 0.3337 -0.1244 0.2093
VehBrand B12 0.5318 -0.1909 0.3410




for example to determine whether they should be included in training or excluded due to

being genuine outliers or originating from sparse regions of the predictor space.
Figure 4.4.1.

Distribution of corrections to GLM prediction
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Let’s look at the distributions of the beta-corrections to better understand which variables still
had signal left to be utilized by the booster after being processed by the GLM. We will

investigate the location and spread of these distributions and how it compares with the Bj as

well as their standard errors.

We start by assessing the distributions for continuous predictors. These can reveal the extent
of corrections made by the booster, their directionality and potential for identified interaction

effects. We observe that o VehAge(x) is bimodal and one of the modes lays on the BVehAgeWIth

a relatively tight spread, only slightly falling outside the standard error of BVeh Age The

second mode prompts us to investigate this predictor further for non-linear relationships with

the target variable or potential interaction effects with other predictors. Density of

(x) is not centred around 3 and importantly, it is spread widely outside the

VehPower VehPower
standard error interval, suggesting a reversal in final IBLM coefficients for many
observations. The dataset we are analysing is well studied and it has been shown that

treatment of this variable as ordinal is preferable, however without this prior knowledge,



x) would give the modeler the feedback needed for feature engineering in this
VehPower g g g

case.'” In section 4.5 we will look more closely at the DrivAge variable. From its
beta-correction distribution in 4.4.2 we can see an asymmetrical signal found by the booster

as well as bimodality and we will show what explains these phenomena.

In practice, these insights from IBLM can aid a modelling actuary in building a better
underlying GLM. A portfolio manager will also benefit from these insights, as the shape of
the beta-correction distributions informs about the potential of profitability, low-risk
segments or anti-selection. For instance, VehAge bimodality suggests that there are two
subgroups that differ in the impact this variable has on the risk. The mode not aligned with

BVehAge should see an increase in the estimated frequency - not captured by the base GLM. A

similar effect is seen for DrivAge.

Figure 4.4.2.
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The location of these distributions may also reveal interaction effects. It could serve as a

prompt to study a given predictor more closely and perform feature engineering leading to a

' Noll et al Case Study: French Motor Third-Party Liability Claims. March 4, 2020.



better fitting GLM e.g. through splitting continuous predictors into buckets or grouping

categories to higher order classes.

We will now analyse two cases of categorical variables, starting with Area. The distributions

of O('Area(x) for each of the levels of this variable suggest that there is no more signal left for

the booster to use after this the data has been processed by the GLM. We note that because
the densities lay within the standard error bands of GLM parameters and have minimal

dispersion. We notice that the modes of the corrections sometimes don’t fall exactly on the Bj.

Given their magnitude and the width of standard error interval, this should not have a
material impact on the final model predictions. The modeler can decide whether to include

these (x]_(x) in the final IBLM for improved interpretability. We refrain from interpreting the

bimodality of the beta corrections for AreaF, as this distribution is contained within the

standard error bands as well.

Figure 4.4.3.
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Focusing on the VehBrand variable next, we can see how the booster finds a predictive signal
not captured by the GLM. This is indicated by beta-correction distributions falling outside the

standard error bands. Interestingly, the modes of some of them are not aligned with Bj. For

example, VehBrandB12 sees the greatest correction as compared to other levels. We also note



that only BVehBrandBlZ' BVehBrandBH' BVehBranst’ BVehBrandBS estimates were 51gn1ﬁcant and

we can see that reflected in the corresponding beta-corrections as well, as they are centred

around zero.

If the IBLM was fitted with the underlying GLM fixed and deployed into production, this set
of distributions gives valuable feedback to the risk of under or overpricing. This is especially

notable for VehBrandB12 or B13 where the a'V Bran d(x) mode is below the GLM estimate.

eh
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We now analyse the obtained A(x). Figure 4.4.5. shows the distribution of A(x), which we

note is bimodal thus prompting us to analyse the individual )\j(x) components for reference

levels of categorical variables in 4.4.6.



Figure 4.4.5.

Overall intercept correction distribution
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We observe that o s (x) has practically no impact on the location of the distribution which

1s in line with what we have observed earlier for the other levels of this covariate. The

greatest shift is noticed in the a (x) as it falls outside SE (BO). Mode of o, o d(x) is

VehGas

the closest to the original intercept but its spread is also wider than the standard error bands.

Figure 4.4.6.
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4.5 Interaction effects

Now we use the booster as a source of information on how to improve the underlying GLM
and understand the risk portfolio. Here we will look for beta-corrections to reveal potential

feature engineering opportunities and interaction effects between predictors.

We plot the individual (x'ij(x) against X, to inspect dependence between the two, which
would reveal non-linear patterns uncaught by the GLM. We plot average @ (x) for each value
in the domain of X, This is indicated by the blue line. The scatter can then be coloured by

the level of another predictor to identify interaction effects.

Looking at DrivAge, the change in directionality and dispersion of beta corrections suggests
the underlying GLM does not capture the non-linear signal of the covariate. We note that for

younger drivers [3 should be increased on average, while drivers in the segment

DrivAge
between 22 and 38 should see a reversal in the base model parameter and only for the older
drivers the GLM fits well. This gives us an indication for potential to split this feature into
three distinct buckets where the experience seems to be different. Furthermore, we note that
there is an interaction between DrivAge and BonusMalus — young drivers tend to have higher

scores, which is in line with intuition and is revealed by the darker coloured scatter.

Figure 4.5.1.
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Now we investigate a potential interaction between VehAge and VehGas by plotting

(x) against x in anticipation of discovering clear patterns. We note that the

X i venage iVehAge
greatest corrections for the newest vehicles coincide with those having Regular Vehgas. That
interaction also explains the bimodal shape of VehAge in Figure 4.4.2. We also observe that
the magnitude of the beta-corrections varies by VehAge thus suggesting both the interaction

effect and a non-linear relationship between the predictor and the target variable.

Figure 4.5.2.
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5. Conclusions

This paper introduced the Interpretable Boosted Linear Model (IBLM) as a method for
closing the interpretability—performance gap in financial predictive modelling. The proposed
approach preserves the parametric structure of a GLM while achieving predictive
performance approaching that of state-of-the-art gradient boosted tree models. The method
combines a base GLM with a residual learner, thereby enhancing predictive accuracy, and
leverages transformed SHAP values to recover parameter-level corrections to the underlying
linear model. We further demonstrated how the IBLM can be incorporated into an iterative

modelling process aimed at maximising the variance explained by the GLM component.



IBLM improves on GLMs by delivering higher predictive accuracy, and on neural networks
and other ML models by being easier to fit and operationalize, while retaining a transparent
linear representation compatible with existing rating structures. SHAP-corrected betas
provide risk insights, supporting more accurate pricing for established products as well as

data-driven pricing in new or niche markets where prior actuarial knowledge may be limited.
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Appendices
Appendix 1 — Post-hoc capping and affine correction

If the full IBLM were deployed, large departures from the underlying GLM would not be
desirable. We therefore cap the booster’s multiplicative correction after training. For a trim

level p€[0, 1) we define a clip function:
clipp(x) =min{max{x,1 — p}, 1 + p}
The clip function can be extended so that the left tail and right tail clipping are asymmetrical.

Then we can apply the post-hoc capping and ensure the average correction of the booster has

a mean of 1 in the following way:

~ clipp(x)
ybooster (xk) o

%igl(:lipp(xi)
The normalizing constant in the denominator can be trained as an additional model parameter

from L and used at inference time. We note that the closer the trim value is to 0, the worse the

predictive performance of IBLM is, ultimately matching GLMs performance at p = 0.

We can visualize a relationship between the base GLM and the clipped ensemble with a
scatter plot. As p decreases, points converge toward the diagonal forming a funnel shape,

allowing less deviation from the GLM. The scatter can also be colored by a predictor which


https://doi.org/10.1080/03461238.2022.2081816?utm_source=chatgpt.com
https://ssrn.com/abstract=5162304?utm_source=chatgpt.com
http://dx.doi.org/10.2139/ssrn.5162304?utm_source=chatgpt.com

will reveal which one of them was the biggest driver of the deviations from the base model.

(NA indicates a case of unrestricted deviations from the base model)

Correction Corridor by Trim Value
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The series of AVE charts show that as p gets closer to zero, the closer IBLM predictions
converge to the GLMs. This is a desirable property from a practical perspective because it
allows a smooth transition from the GLM to IBLM by increasing p through time as

stakeholders gain confidence in application of the ML model.
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Instead of applying post-hoc capping, one could achieve the same effect during training by
modifying the booster’s target through an affine transformation, thereby constraining its

deviations from the GLM’s predictions.

Appendix 2 - R code

In order to reproduce the results and graphs from this manuscript, please refer to this GitHub

repository github.com/Karol-Gawlowski/IBLM_BHP and the script paper code.R



http://github.com/Karol-Gawlowski/IBLM_BHP

