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Abstract 

Bridging the gap between models' predictive power and interpretability is one of 

the key problems in modern predictive analytics specifically in insurance. Despite 

the availability of more performant Machine Learning (ML) tree-based models, 

less predictive GLMs are still a go-to method due to their explainable nature. We 

propose a novel method for ensembling GLMs and GBMs and transform the 

state-of-the-art interpretability technique – SHAP. The resulting ensemble model, 

Interpretable Boosted GLM (IBLM), retains the linear formulaic representation 

and provides a set of per-observation parameter corrections. These corrections 

help modelers understand how the ensemble deviates from the underlying GLM 

while improving its performance. The linear architecture of IBLM allows insurers 

to easily implement it into the existing rating structures, reducing or even 

eliminating friction costs of its implementation. The SHAP-corrected coefficients 

enable familiar interpretation of the rates for customers and stakeholders. Most 

importantly, the transparent nature of IBLM allows insurers better assessment of 

the risk they are exposed to.  

Keywords: Generalized Linear Models, Regression Models, Interaction 

Effects, Ensemble Methods, Shapley Values, SHapley Additive exPlanations 

(SHAP), Interpretability, Explainable AI (XAI), XGBoost, Tabular Data 

1 Introduction 

Gradient Boosting Machines (GBMs), in particular eXtreme Gradient Boost (XGBoost), have 

consistently outperformed traditional statistical models and neural networks on tabular data.34 

Despite the maturity of reliable interpretability techniques such as SHapley Additive 

exPlanations (SHAP), the adoption of these more performant models in insurance remains 

slow, with transparency frequently being a key barrier. In insurance, tabular datasets are the 
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norm, yet the adoption of advanced Machine Learning (ML) models such as tree ensembles 

or neural networks remains limited. Despite their success in other domains, neural networks 

in particular, often fall short in tabular data tasks, where tree-based models like GBMs excel.1 

This performance gap is largely due to the inherent properties of tabular data, which presents 

challenges—such as irregular patterns and the presence of uninformative features—that 

tree-based methods are naturally adept at handling.1 In contrast, neural networks struggle 

with these complexities, making tree-based models the more reliable choice in many financial 

applications. On the other hand, Generalized Linear Models (GLMs) have long been a 

cornerstone for predictive modelling for financial applications due to their simplicity, 

interpretability, and relatively strong performance. They are widely used because they offer a 

clear formulaic structure that is easy to explain, aligning well with the regulatory 

requirements and professional standards in the industry.5 Furthermore, GLMs are a familiar 

tool in actuarial science, often featured in professional exams and applied in real-world risk 

assessment models. However, while GLMs offer great transparency, their predictive power 

can be limited by their rigid structure. Non-linearity is typically modelled through variable 

transformation before estimating the coefficients of the linear equation so the scope of 

capturing non-linearity is not straightforward.  

In actuarial data science, there has been a marked increase in interest in the application of 

machine learning, with commercial adoption often facilitated by software vendors (e.g., 

Akur8, Quantee, Optalitix) offering either AI-augmented GLM methodologies or fully 

machine learning–based models aimed at improving current modelling practices. The 

problem of bridging the performance–interpretability gap between transparent statistical 

methods and more powerful but opaque machine learning models has received sustained 

attention from both practitioners and academics.6,7 8  

In summary, both GLM and ML have several weaknesses and strengths: GLM is easy to 

construct and interpret and fits well into the existing rating structure that stakeholders are 

familiar with. However, GLM struggles with non-linear data patterns without prior data 

transformation, often resulting in lower performance compared to ML models. Neural 

Networks may offer superior performance compared to GLM, though NNs are not adept at 

handling tabular datasets and may fall short in comparison to Gradient Boosting Machines 
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(GBM).1 The standard NN is opaque and difficult to interpret but some architectures, such as 

localGLMNet, are more interpretable.9 Despite recent developments, all NNs variants suffer a 

major practical weakness: they require significant effort to configure to realise their full 

performance potential, and the associated cost and effort of implementing them often negates 

the performance improvements, rendering this model class less favoured in actuarial and 

insurance applications. GBM, in particular, XGBoost, has become a popular tool in recent 

years, due to its relative ease of implementation, and superior performance – especially with 

tabular data.1,2 The only potential drawback of the standard GBM is its need for separate 

explanatory AI methods to attain interpretability. 

This paper proposes a novel model Interpretable Boosted Linear Model (IBLM) that retains 

the strengths of GLM and GBM, while addressing their limitations: IBLM retains the 

interpretable nature of GLMs but adds flexibility to improve predictive accuracy. We build on 

the formulaic structure of GLMs by allowing the coefficients to vary locally for each 

observation, akin to the concept behind LocalGLMnet where output can be interpreted as an 

individual linear model adapted to different data points.6 However, unlike the approach in 

LocalGLMnet, our architecture starts with a set of coefficients from a pre-existing GLM and 

generates a set of deviations (beta-corrections) that offer a better overall fit, while ensuring 

the combined model remains grounded in a familiar and linear closed form expression.  

To achieve that, we introduce a residual modelling approach where a more flexible, 

non-linear model predicts the errors of the underlying GLM. This is the principle underlying 

boosting ensembles, thus we will refer to this residual model as a booster. While residual 

modelling itself is not new, our key contribution lies in how we utilize SHAP values within 

this framework. Rather than using SHAP exclusively to explain the residual predictions of the 

booster, we leverage it to correct the GLM coefficients. This allows us to combine the 

transparency of GLMs with the superior predictive power of machine learning models, 

addressing the long-standing trade-off in financial data science between model 

interpretability and accuracy. Our proposition leverages GBM in place of the residual model.  

As we will demonstrate in more detail, our proposition allows for a smooth transition from 

statistical modelling to building ML models, which is a key consideration in practice. Our 

method can be used as a standalone predictive model or in a model development cycle, where 
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the residual model informs the modeler about non-linear effects and interactions that may not 

have been captured in the underlying GLM.  

Organization of this manuscript. Section 2 is a formal introduction of the building blocks 

of the IBLM architecture – GLM, GBM, and SHAP. We then introduce IBLM along with 

beta-corrections and their interpretations in section 3. In section 4 we demonstrate real-world 

applications of IBLM and compare it to the underlying GLM to assess the uplift in 

performance, and to XGBoost as the top performing predictive ML model. We also discuss 

the practical interpretation of beta-corrections and how these insights can help insurers 

manage risk in their portfolios. Finally, we conclude in section 5. 

2. Constituent models and SHAP introduction 

This section is arranged as follows: section 2.1 introduces the starting point of IBLM – GLM. 

Section 2.2 introduces the basic GBM, and an improved implementation of GBM, i.e. 

XGBoost. Then section 2.3 introduces SHAP which is the explanatory technique that 

produces Shapley values to correct the coefficients of IBLM.  

2.1 GLM 

The GLM was first introduced in 1972 as a class of models to predict a response variable 

with a distribution from the exponential family including Normal, Binomial, Poisson, and 

Gamma distribution.10 GLMs have three core components: 

(1)​A random response variable  whose distribution belongs to the exponential family, 𝑦

characterized by a canonical parameter  and a dispersion parameter  with θ ϕ

 For a fixed , the distribution is fully specified by . The parameter  is α(ϕ) > 0 ϕ θ θ

the canonical parameter.  

(2)​A linear model where the response variable y can be linearly represented by a set of 

independent variables or features  in the form of: 𝑥
1
,  ...,  𝑥

𝑑
 

 η = β
0

+
𝑗=1

𝑑

∑ β
𝑗 
𝑥

𝑗

where are coefficients to be estimated and is the intercept.  β
1 

, ...,  β
𝑑 

β
0 

(3)​A link function  that connects the expected value of the response variable in (1) to 𝑔

the linear predictor  in (2) : η
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 𝑔(μ) = η

When  corresponds to the canonical link of the exponential family distribution,  is 𝑔 µ

the mean of the random variable y in (1) and the linear predictor  is directly related η

to the canonical parameter . The choice of link function depends on the distribution θ

of  with log-link being the most popular choice.11 For example: 𝑦

●​ Poisson and exponential distributions often use the log link. 

●​ Binomial distribution often uses the logit link. 

●​ Gamma distribution often uses the reciprocal link. 

 

It is worth pointing out the resemblance between the linear equation describing the local 

accuracy property of SHAP we introduce next and the linear equation describing the second 

component of GLM. This resemblance allows the coefficients of the Interpretable Boosted 

Linear Model to be corrected by SHAP. This point will be discussed in section 2.3.  

2.2 Gradient Boosting Machine and Extreme Gradient Boosting 

Gradient Boosting Machines (GBMs), introduced by Friedman, is a flexible framework for 

constructing predictive models through stagewise functional optimization.12 In this setting, 

we consider a response  with conditional mean , modeled via a predictor 𝑌 μ(𝑥) = 𝐸[𝑌∣𝑥]

function . The GBM framework aims to approximate  by iteratively combining base 𝐹(𝑥) 𝐹(𝑥)

learners, typically regression trees, in order to minimize a specified loss function. 

Formally, let  denote a convex loss function. The gradient boosting algorithm 𝐿(𝑦, 𝐹(𝑥))

constructs the predictor as an additive model 

 𝐹
𝑀

(𝑥) = β
0

+ ​
𝑚=1

𝑀

∑ ν𝑓
𝑚

(𝑥)

where  are base learners from a restricted function class ,  is a shrinkage 𝑓
𝑚

𝐹 ν ∈(0, 1]

parameter (learning rate), and  is the number of boosting iterations. At iteration , the 𝑀 𝑚

algorithm fits a base learner  to the negative gradient of the loss with respect to the current 𝑓
𝑚

model: 

 𝑟
𝑖𝑚​

=− ∂
∂𝐹 ​𝐿 𝑦

𝑖
​, 𝐹 𝑥

𝑖
​( )( )​​|

𝐹=𝐹
𝑚−1

​ 𝑥
𝑖
​( ) ​

,
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for observed data  The learner  is chosen to approximate these residuals, and the (𝑦
𝑖
 , 𝑥

𝑖
) 𝑓

𝑚

model is updated via 

 𝐹
𝑚

​(𝑥) = 𝐹
𝑚−1

​(𝑥) + ν𝑓
𝑚

​(𝑥).

When the loss is the squared error, the updates reduce to fitting regression trees to residuals, 

which gives gradient boosting its interpretation as a sequential residual fitting procedure. For 

distributions commonly used in actuarial modeling—such as Poisson, Gamma, or 

Tweedie—the natural choice is to use the corresponding likelihood loss together with the 

canonical log link. In this setting the mean satisfies and the update µ
𝑚

​ 𝑥( ) = 𝑒𝑥𝑝 𝐹
𝑚

​ 𝑥( )( )  

takes the multiplicative form 

 µ
𝑚

​ 𝑥( ) = µ
𝑚−1

​ 𝑥( )𝑒𝑥𝑝 ν𝑓
𝑚

​ 𝑥( )( ) 

Thus, gradient boosting can be viewed as either an additive ensembling scheme on the 

canonical scale , or equivalently as a multiplicative ensembling scheme on the mean 𝐹(𝑥)

scale . This dual perspective highlights its flexibility in capturing nonlinearities and μ(𝑥)

interactions beyond the scope of generalized linear models and is fundamental for IBLM 

architecture. 

XGBoost is an implementation of GBM with a few additional technical advances to reduce 

overfitting, to handle missing data efficiently, and to improve computational performance.  

One of the key improvements to the GBM is that XGBoost adds a regularisation term to the 

loss function that penalizes complexity of the model so the new loss function  𝐿'(𝑦, 𝐹(𝑥))

becomes: 

 𝐿' 𝑦, 𝐹 𝑥( )( ) = 𝐿 𝑦, 𝐹 𝑥( )( ) + γ𝑇 + 1
2 ​λ‖𝑤‖2.

where  is the number of leaves in a tree;  the leaf weights; and  are user-defined 𝑇 𝑤 γ λ

hyperparameters of XGBoost. If  and  are both zero, the loss function is effectively the γ λ

same as the basic GBM.2 

In addition to the regularisation term, XGBoost uses several other techniques such as 

shrinkage and column sampling to reduce overfitting. While each technique on its own may 

be used in other ML algorithms, XGBoost uniquely employs a combination of all three that 

reduce overfitting more efficiently than the basic GBM.  XGboost also improves performance 

through the optimal split when dealing with missing and scarce data that are often present in 

 



 

real datasets. Lastly, XGBoost has several computational advantages such as parallel 

computation that makes the model converge faster. These design and technical advantages 

allow XGBoost to outperform other machine learning algorithms on many large, 

high-dimensional datasets with missing values, so we chose XGBoost as a constituent model 

of IBLM. That said, we want to emphasize that XGBoost could be easily substituted with 

another booster model, such as the basic GBM or even NN, if deemed more suitable.  

2.3 SHAP 

SHAP stands for SHapley Additive exPlanations. It is based on cooperative game theory that 

guarantees a unique attribution of contributions of each input variable. The SHAP technique 

has become one of the most popular explanatory methods since its introduction in 2017.13 

These contributions can be summed to produce an interpretable decomposition of the original 

prediction. For a simple linear model such as GLM, the outputs are easy to interpret, so the 

best explanation is the model itself. For complex non-linear models such as XGBoost or 

Neural Networks, the outputs are not easy to interpret, so a simpler explanation framework 

such as SHAP is needed.  

SHAP is the adaptation of Shapley values. In a regression context, the Shapley value of 

feature  is the weighted average of the difference between conditional expectation on subset 𝑥
𝑗

of features including  and conditional expectations on all subsets excluding . It is 𝑥
𝑗

𝑥
𝑗

calculated as follows: let  represent a feature subset  where  is the set of all features. 𝑆 𝑆 ⊆ 𝐹 𝐹

A model  is trained with feature  present, and model  is trained with the feature  𝑓
𝑆∪{𝑗}

𝑥
𝑗

𝑓
𝑆

𝑥
𝑗

withheld, i.e. a subset S excluding . Then, the difference between predictions from model 𝑥
𝑗

 and  is computed. Since the effect of feature  depends on other features in subset S, 𝑓
𝑆∪{𝑗}

𝑓
𝑆

𝑥
𝑗

we need to compute all the differences between  and  conditioning on all the subsets 𝑓
𝑆∪{𝑗}

𝑓
𝑆

excluding , that is . Shapley value of feature  denoted as is then the weighted 𝑥
𝑗

𝑆 ⊆𝐹 \{𝑗} 𝑥
𝑗

ϕ
𝑗 

average of all possible differences. 10 Formally, Shapley value of a covariate   is computed 𝑥
𝑗

as: 

 ϕ
𝑗 

=
𝑆⊆𝐹{𝑗}

∑ 𝑆| |! 𝐹| |− 𝑆| |−1( )!
𝐹| |! [𝑓

𝑆∪{𝑗}
𝑥

𝑆∪{𝑗}( ) − 𝑓
𝑆
(𝑥

𝑆
)]
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where  is the set of all features and  represents a subset  and  is a model trained 𝐹 𝑆 𝑆 ⊆ 𝐹 𝑓
𝑆

𝑓 

only on the subset .  𝑆

Retraining  for all possible permutations of  is computationally inefficient, and SHAP is a 𝑓
𝑆

𝑆

way to approximate  without loss of its desirable properties. In practice, SHAP decomposes ϕ
𝑗

an output of any model into the contributions of its input features, where their directionality 

and magnitude indicate their impact on the overall prediction.  

 𝑔 𝑥( ) = ϕ
0 

+
𝑗=1

𝑑

∑ ϕ
𝑗 
(𝑥)

Where  is the models’ prediction at the link function level and  is the contribution 𝑔 𝑥( ) ϕ
𝑗 

𝑥( )

of feature .  𝑥
𝑗

Now we list the properties of SHAP that make it a desirable and reliable model explanation 

method:  

1.​ Local Accuracy: the decomposition is exact, i.e. the prediction equals the sum of all 

contributions plus the baseline. 

2.​ Symmetry: if two features contribute identically across all coalitions, they receive 

equal attribution. 

3.​ Dummy (Nullity): a feature with no effect on the prediction has zero contribution. 

4.​ Additivity: attributions are consistent across models, allowing linearity of 

explanations. 

5.​ Model-agnostic: SHAP values can be computed for any predictive model by 

evaluating the contributions of each feature across all of their possible subsets. In 

practice, exact computation is combinatorially expensive, but specialized algorithms 

exploit the model structure to improve efficiency. For instance, TreeSHAP leverages 

the hierarchical structure of decision trees to compute SHAP values in polynomial 

time, making it particularly suitable for tree-based ensembles such as GBMs. This 

allows the additive decomposition to be efficiently obtained even for complex models 

while retaining the interpretability guarantees of the SHAP framework. 

 



 

It has been demonstrated that SHAP is more accurate and consistent than other explanatory 

techniques.14 As discussed in section 3, under the Interpretable Boosted Linear Model, SHAP 

values are used to correct coefficients of GLM, so these desirable properties are especially 

important.  

3. IBLM 

3.1 IBLM definition 

The main aim of the Interpretable Boosted Linear Model is to achieve superior performance 

compared to a pure GLM, whilst maintaining a linear architecture, making the coefficients of 

the ensemble model easy to interpret and explain.  

In this paper, we propose the Interpretable Boosted Linear Model (IBLM), which combines a 

GLM with a tree-based booster such as XGB, leveraging the superior performance of tree 

ensembles on structured data. The GLM serves as the primary predictor, and the booster is 

trained to model its residuals using the same input features. The ensemble output is obtained 

by aggregating the predictions of the GLM and the residual model, either additively or 

multiplicatively, depending on the response variable. SHAP values from the residual model 

are transformed into adjustments to the GLM coefficients, referred to as beta-corrections. 

When the residual model is predictive, this results in an ensemble that is both highly 

performant and interpretable within a familiar linear-model framework.  

Lemma (SHAP decomposition as a linear predictor) 

Let  be the residual predicted by the booster model, and let 𝑦
𝐵

 𝑦
𝐵

= φ
0
(𝑥) +

𝑗=1

𝑑

∑ φ
𝑗
(𝑥)

be its SHAP decomposition, where  is the SHAP contribution of feature .​φ
𝑗

𝑥( ) 𝑥
𝑗

This can be approximated in a locally linear form as 

 𝑦
𝐵

≈ φ
0

𝑥( ) +
𝑗=1

𝑑

∑
φ

𝑗
𝑥( )

𝑥
𝑗
+δ 𝑥

𝑗
= φ

0
𝑥( ) +

𝑗=1

𝑑

∑ α
𝑗
(𝑥)𝑥

𝑗
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Where guarantees numerical stability if . This representation highlights that δ > 0 𝑥
𝑗| | < ε

SHAP can be interpreted as a locally linear model, with feature-specific coefficients  α
𝑗

𝑥( )

that vary with the feature vector .  𝑥

Definition (Interpretable Boosted Linear Model) 

Let  be the feature vector, g the link function, , and let the GLM 𝑥 = (𝑥
1
​, …, 𝑥

𝑑
​) μ = 𝐸[𝑌|𝑥]

and booster components  and , respectively. Then the IBLM models the µ
𝐺

​ 𝑥( ) µ
𝐵

​ 𝑥( )

canonical-scale predictor as: 

 

Which can be written as: 

 

where: 

●​  combines the GLM intercept  with the baseline adjustment λ(𝑥) = β
0

+ ϕ
0
(𝑥) β

0

 from the booster, ϕ
0
(𝑥)

●​  are the original GLM coefficients, β
𝑗

●​  are feature-wise corrections learned by the residual model. α
𝑗
(𝑥)

●​  is a final corrected beta for a given observation  α
𝑗
' 𝑥( ) = β

𝑗
+ α

𝑗
(𝑥)

This formulation preserves the additive structure of the GLM on the canonical scale, while 

allowing flexible, nonlinear adjustments through . For links such as the log, this also α
𝑗
(𝑥)

corresponds to multiplicative adjustments on the mean scale, giving a unified and 

interpretable representation of the combined model. 

 



 

The IBLM architecture and crucially  can be obtained using any state-of-the-art α
𝑗
(𝑥)

predictive model, given  estimation techniques that are model agnostic like kernel-SHAP.15 φ
𝑗

We comment on the practical aspects and interpretation in the section that follows. 

3.2 Beta-corrections interpretation and practical consideration 

In many ways the interpretation of beta-corrections will be similar to that of regression 

attentions of LocalGLMNet. The main difference here is that  are anchored in  thus α
𝑗
(𝑥) β

𝑗

they can give feedback as to the fit quality of the underlying model and inform of signal not 

captured therein. Thus, IBLM can be used either as an interpretable architecture enhancing a 

pre-existing GLM, or in a modelling cycle where the booster informs about areas of 

underperformance of the base model. As the GLM iterations improve, the interpretable 

component explains more variance, leaving only complex patterns for the machine learning 

booster to capture while transparency is maintained. 

We list properties of beta-corrections below: 

(1)​Goodness of fit: if or similarly  indicates that the underlying α
𝑗

𝑥( ) < ε 𝑆𝐸 β
𝑗( ) > α

𝑗
𝑥( )

GLM captures the signal from  sufficiently well and that there are no strong 𝑥
𝑗

interactions effects involving .  𝑥
𝑗

(2)​Nonlinearity:  over the range of , indicates a linear relationship of the 
∂α

𝑗
​ 𝑥( )

​∂𝑥
𝑗

​≈0 𝑥
𝑗

target variable with ,. Otherwise, the non-linear signal has been captured by the 𝑥
𝑗

booster. 

(3)​Interaction effects:  for  indicates lack of interaction effects or otherwise, 
∂α

𝑗
​ 𝑥( )

​∂𝑥
𝑘

​≈0 𝑘≠𝑗

they are captured by the booster. 

(4)​Treatment of the intercept: When any categorical or binary variables are not used, 

term  can be dropped and replaced with a constant  as a sum of  and a λ(𝑥) λ β
0

constant  SHAP bias. Otherwise,  for an observation  is the sum of its  φ
0

λ
𝑖
(𝑥) 𝑥

𝑖
α

𝑖,𝑗
(𝑥)

for reference levels of categorical/binary predictors.  

15 Molnar (2019) 

 



 

Points 2 and 3 are specifically interesting when utilizing libraries like XGBoost which let the 

modeler control interactions and introduce monotonicity constraints. We will expand on that 

in the next section. 

The proposed architecture utilizes XGBoost implementation of the GBM as the booster for 

the underlying GLM, however this need not be the case. We emphasize that the same 

formulaic representation can be obtained using any model to predict the residuals, as long as 

it is of satisfactory predictive performance and utilizes the same predictors. The 

beta-corrections can be obtained in the same fashion. However, when it comes to estimating 

SHAP, tree-based models are preferable because the computation time required is much less 

than for e.g. neural networks. Which combined with tree ensembles outperforming NN in 

tabular tasks, make the XGBoost an optimal choice for IBLM. What is more, XGBoost 

implementation offers additional features useful in practice like monotonicity constraints, 

efficient and scalable compute as well as easily retrievable SHAP values. These design 

features further make IBLM applicable in practice and their impact can be viewed through 

beta-corrections. We also note that standard SHAP-based variable importance can still be 

used if need be. 

Extending the approach to alternative residual models, including neural-network–based 

variants, lies beyond the scope of the present study but offers potential for further 

investigation. A promising direction for future research is to place LocalGLMnet in place of 

the booster and interpret its learned regression attentions directly as  in the IBLM α
𝑗

𝑥( )

framework. 

4 Real Data Example 

4.1 Data overview 

We consider the application of our model architecture to the FreMTPL2freq dataset, available 

through the CASdatasets R package.16 This dataset is widely used in actuarial data science 

literature, and we provide only a brief overview here. For a detailed analysis, see the case 

study by Noll et al (2020). 

The dataset consists of  observations and includes  variables,  of which 𝑛 = 678'013 12 11

are predictors. Our observations are  where we have the claims number  , (𝑌
𝑖
, 𝑣

𝑖
, 𝑥

𝑖
) 𝑌

𝑖
∈ 𝑁

0

16 Dutang–Charpentier 

 



 

exposure  and predictors  outlined in listing 4.1.1. The total number of 𝑣
𝑖

∈ (0, 2. 01] 𝑥
𝑗

reported claims is  with a combined exposure of  
𝑖=1

𝑛

∑ 𝑦
𝑖

= 36'012
𝑖=1

𝑛

∑ 𝑣
𝑖

= 358'499. 4

yielding an overall claim frequency of . 10%

Listing 4.1.1 

●​ 5 numerical features: Bonus-Malus Level, Density, Driver’s Age, Vehicle Age, 

Vehicle Power; 

●​ 1 binary feature: Vehicle Gas; 

●​ 3 categorical features: Area Code, Vehicle Brand and Region  

4.2 Model Performance benchmarks 

The modelling task is to estimate the expected claim frequency. Model performance is 

assessed using Poisson deviance  and to compare the performance uplift against a 𝐷

homogenous model we use the Pinball Score .  𝑅* 

 𝑅* = 1 −
𝐷

𝑚

𝐷
0

Where  indicates Poisson deviance of a predictive model of interest and  Poisson 𝐷
𝑚

𝐷
0

Deviance of a null model. We split the data into Train, Validation and Test sets consisting of 

70%, 15% and 15% of the total number of records respectively. Train set  consists of 𝐿

 records and both test  and validation  of  𝑛
𝐿

= 474'609 𝑇 𝑉 𝑛
𝑇

= 𝑛
𝑉

= 101'701

We perform minimal data processing and feature engineering and will demonstrate how the 

latter can be achieved further in this section, utilizing outputs of IBLM. We remark that 

categorical variables for the GLM were dummy encoded and their treatment for XGB is 

through one-hot encoding.  

Firstly, we compare the performance of our proposed architecture against two widely used 

interpretable and high-performing models – GLM and XGBoost.  is used to learn the 𝐿

parameters of the GLM, XGBoost, and IBLM models. The validation set is employed for 

early stopping and to prevent overfitting in the boosted models, ensuring robust 

out-of-sample generalization. 

 



 

For the GLM, we use the canonical log link. Both XGBoost and the tree-based booster 

component within IBLM are trained using default hyperparameters, optimization of which is 

beyond the scope of this study. We train the models for up to 300 rounds with early stopping 

set to 25. In practice, we find that the default XGBoost parameters already yield strong 

performance, which is appealing for practitioners who may be less experienced with 

hyperparameter tuning; while more advanced users could pursue further gains through 

optimization algorithms. The key hyperparameter values used are ; 𝑙𝑒𝑎𝑟𝑛 𝑟𝑎𝑡𝑒 =  0. 3

.  𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 6

Table 4.2,1 presents the results of the model benchmarking exercise. We observe that while 

XGBoost achieves the highest predictive accuracy, IBLM follows closely. Both models 

outperform the baseline GLM by a factor of approximately three in terms of improvement 

over a homogeneous model, as measured by the Pinball Score. 

Table 4.2.1 

 null GLM XGBoost IBLM 

Poisson Deviance 1.4195 1.3606 1.2386 1.2475 

Pinball Score 0.00% 4.15% 12.74% 12.12% 

 

Figure 4.2.2 

 

 



 

We also look at an example actual vs expected chart based on  for DrivAge in Figure 4.2.2. 𝑇

Unsurprisingly, we see how on average IBLM is closer to XGBoost while diverging from the 

GLM, in most of the cases fitting better to the actual observations. 

The ages were only binned for better legibility. We note that for ages 84 and above, there is 

very little exposure thus none of the models is very performant. It is worth observing that in 

those low exposure segments, IBLMs predictions remained much closer to its baseline GLM 

as compared to the XGB.  

From an implementation standpoint if predictions vastly different from the underlying GLM 

are undesirable a post hoc capping can be applied. Details of this approach are covered in 

Appendix 1. 

4.3 Interpretability per observation  

We show how to investigate individual instances of IBLM. This view would mostly be useful 

from an underwriters’ standpoint, or for explainability for insureds requirements. 

Let’s look at an observation from  where  and  yielding a 𝑇 𝑦
𝐺𝐿𝑀

= 0. 2942 𝑦
𝐼𝐵𝐿𝑀

= 0. 1114

correction from the booster of . For this instance, the correction from the GLM 𝑦
𝐵

 = 0. 3784

is in the right direction as the true target value .  𝑦
𝑖

= 0

In absolute terms the biggest beta-corrections are for VehAge and VehBrand. However, in 

relation to the  the greatest impact is obtained for VehPower. In most cases the booster β
𝑗

proposes a decrease in the GLM parameters whereas an increase is suggested only for Area 

and VehPower, which results in an overall decrease of the predicted frequency. 

 

 



 

Table 4.3.1 

 Predictors GLM coef. Beta-corr. Lin. Pred. Lin. Pred. IBLM 

  𝑥  β  α  𝑥(β + α)
 ∑ 𝑥 β + α( )  𝑒𝑥𝑝 ∑ 𝑥 β + α( )( )

Intercept 1 -2.6174 -0.0053 -2.6228 -2.195 0.111 

Region R73 -0.1669 -0.0285 -0.1955   

VehAge 2 -0.0601 -0.2940 -0.7082   

VehPower 10 -0.0003 0.0072 0.0691   

Density 3301 0.0000 0.0000 0.0146   

DrivAge 61 0.0008 -0.0017 -0.0593   

Area E 0.0132 0.0003 0.0135   

BonusMalus 50 0.0156 -0.0007 0.7434   

VehGas Regular 0.3337 -0.1244 0.2093   

VehBrand B12 0.5318 -0.1909 0.3410   

 

4.4 Global Interpretability  

Given the structure of the IBLM, the flow of information from the booster can be examined 

in multiple ways, which we outline in this section based on , unseen during training.  𝑇

Figure 4.1.1.  presents the distribution of overall corrections stemming from the booster, 

which have a mean close to 1. This aligns with the balancing property of the GLM 

component—on average, no systematic correction is required. This property provides a 

safeguard against booster bias that could otherwise degrade the IBLM fit. A pronounced long 

tail in this distribution may be undesirable in practice; the model can be fitted with this in 

mind by applying a transformation to the residuals, as described in Appendix 1. Alternatively, 

focusing on instances with the largest corrections can be instructive, as it highlights where the 

GLM exhibits its largest errors relative to the highly performant XGBoost. Such analysis can 

act as an additional validation step and help identify model points warranting further scrutiny, 

 



 

for example to determine whether they should be included in training or excluded due to 

being genuine outliers or originating from sparse regions of the predictor space. 

Figure 4.4.1. 

  

​  

Let’s look at the distributions of the beta-corrections to better understand which variables still 

had signal left to be utilized by the booster after being processed by the GLM. We will 

investigate the location and spread of these distributions and how it compares with the  as β
𝑗

well as their standard errors. 

We start by assessing the distributions for continuous predictors. These can reveal the extent 

of corrections made by the booster, their directionality and potential for identified interaction 

effects. We observe that   is bimodal and one of the modes lays on the with α'
𝑉𝑒ℎ𝐴𝑔𝑒

(𝑥) β
𝑉𝑒ℎ𝐴𝑔𝑒

a relatively tight spread, only slightly falling outside the standard error of . The β
𝑉𝑒ℎ𝐴𝑔𝑒

second mode prompts us to investigate this predictor further for non-linear relationships with 

the target variable or potential interaction effects with other predictors. Density of 

 is not centred around  and importantly, it is spread widely outside the α'
𝑉𝑒ℎ𝑃𝑜𝑤𝑒𝑟

(𝑥) β
𝑉𝑒ℎ𝑃𝑜𝑤𝑒𝑟

standard error interval, suggesting a reversal in final IBLM coefficients for many 

observations. The dataset we are analysing is well studied and it has been shown that 

treatment of this variable as ordinal is preferable, however without this prior knowledge, 

 



 

 would give the modeler the feedback needed for feature engineering in this α'
𝑉𝑒ℎ𝑃𝑜𝑤𝑒𝑟

(𝑥)

case.17 In section 4.5 we will look more closely at the DrivAge variable. From its 

beta-correction distribution in 4.4.2 we can see an asymmetrical signal found by the booster 

as well as bimodality and we will show what explains these phenomena.  

In practice, these insights from IBLM can aid a modelling actuary in building a better 

underlying GLM. A portfolio manager will also benefit from these insights, as the shape of 

the beta-correction distributions informs about the potential of profitability, low-risk 

segments or anti-selection. For instance, VehAge bimodality suggests that there are two 

subgroups that differ in the impact this variable has on the risk. The mode not aligned with  

should see an increase in the estimated frequency - not captured by the base GLM. A β
𝑉𝑒ℎ𝐴𝑔𝑒

 

similar effect is seen for DrivAge. 

Figure 4.4.2. 

 

The location of these distributions may also reveal interaction effects. It could serve as a 

prompt to study a given predictor more closely and perform feature engineering leading to a 

17 Noll et al Case Study: French Motor Third-Party Liability Claims. March 4, 2020. 

 



 

better fitting GLM e.g. through splitting continuous predictors into buckets or grouping 

categories to higher order classes. 

We will now analyse two cases of categorical variables, starting with Area. The distributions 

of  for each of the levels of this variable suggest that there is no more signal left for α'
𝐴𝑟𝑒𝑎

(𝑥)

the booster to use after this the data has been processed by the GLM. We note that because 

the densities lay within the standard error bands of GLM parameters and have minimal 

dispersion. We notice that the modes of the corrections sometimes don’t fall exactly on the . β
𝑗

Given their magnitude and the width of standard error interval, this should not have a 

material impact on the final model predictions. The modeler can decide whether to include 

these  in the final IBLM for improved interpretability. We refrain from interpreting the α
𝑗
(𝑥)

bimodality of the beta corrections for AreaF, as this distribution is contained within the 

standard error bands as well. 

Figure 4.4.3. 

 

Focusing on the VehBrand variable next, we can see how the booster finds a predictive signal 

not captured by the GLM. This is indicated by beta-correction distributions falling outside the 

standard error bands. Interestingly, the modes of some of them are not aligned with . For β
𝑗

example, VehBrandB12 sees the greatest correction as compared to other levels. We also note 

 



 

that only  estimates were significant and β
𝑉𝑒ℎ𝐵𝑟𝑎𝑛𝑑𝐵12

,  β
𝑉𝑒ℎ𝐵𝑟𝑎𝑛𝑑𝐵14

,  β
𝑉𝑒ℎ𝐵𝑟𝑎𝑛𝑑𝐵3

,  β
𝑉𝑒ℎ𝐵𝑟𝑎𝑛𝑑𝐵5

we can see that reflected in the corresponding beta-corrections as well, as they are centred 

around zero.   

If the IBLM was fitted with the underlying GLM fixed and deployed into production, this set 

of distributions gives valuable feedback to the risk of under or overpricing. This is especially 

notable for VehBrandB12 or B13 where the mode is below the GLM estimate. α'
𝑉𝑒ℎ𝐵𝑟𝑎𝑛𝑑

(𝑥) 

Figure 4.4.4. 

 

We now analyse the obtained  . Figure 4.4.5. shows the distribution of , which we λ(𝑥) λ(𝑥)

note is bimodal thus prompting us to analyse the individual  components for reference λ
𝑗
(𝑥)

levels of categorical variables in 4.4.6. 

 

 



 

Figure 4.4.5. 

 

We observe that  has practically no impact on the location of the distribution which α
𝐴𝑟𝑒𝑎𝐴

(𝑥)

is in line with what we have observed earlier for the other levels of this covariate. The 

greatest shift is noticed in the  as it falls outside . Mode of  is α
𝑉𝑒ℎ𝐺𝑎𝑠

(𝑥) 𝑆𝐸(β
0
) α

𝑉𝑒𝑣𝐵𝑟𝑎𝑛𝑑
(𝑥)

the closest to the original intercept but its spread is also wider than the standard error bands.  

Figure 4.4.6. 

 

 



 

4.5 Interaction effects  

Now we use the booster as a source of information on how to improve the underlying GLM 

and understand the risk portfolio. Here we will look for beta-corrections to reveal potential 

feature engineering opportunities and interaction effects between predictors.  

We plot the individual  against  to inspect dependence between the two, which α'
𝑖,𝑗

(𝑥) 𝑥
𝑖,𝑗

would reveal non-linear patterns uncaught by the GLM. We plot average  for each value α
𝑗
(𝑥)

in the domain of . This is indicated by the blue line. The scatter can then be coloured by 𝑥
𝑖,𝑗

the level of another predictor to identify interaction effects.  

Looking at DrivAge, the change in directionality and dispersion of beta corrections suggests 

the underlying GLM does not capture the non-linear signal of the covariate. We note that for 

younger drivers  should be increased on average, while drivers in the segment β
𝐷𝑟𝑖𝑣𝐴𝑔𝑒

between 22 and 38 should see a reversal in the base model parameter and only for the older 

drivers the GLM fits well. This gives us an indication for potential to split this feature into 

three distinct buckets where the experience seems to be different. Furthermore, we note that 

there is an interaction between DrivAge and BonusMalus – young drivers tend to have higher 

scores, which is in line with intuition and is revealed by the darker coloured scatter.  

Figure 4.5.1. 

 

 



 

Now we investigate a potential interaction between VehAge and VehGas by plotting 

 against  in anticipation of discovering clear patterns. We note that the α'
𝑖,𝑉𝑒ℎ𝐴𝑔𝑒

(𝑥) 𝑥
𝑖,𝑉𝑒ℎ𝐴𝑔𝑒

greatest corrections for the newest vehicles coincide with those having Regular Vehgas. That 

interaction also explains the bimodal shape of VehAge in Figure 4.4.2. We also observe that 

the magnitude of the beta-corrections varies by VehAge thus suggesting both the interaction 

effect and a non-linear relationship between the predictor and the target variable. 

Figure 4.5.2. 

 

 

5. Conclusions 

This paper introduced the Interpretable Boosted Linear Model (IBLM) as a method for 

closing the interpretability–performance gap in financial predictive modelling. The proposed 

approach preserves the parametric structure of a GLM while achieving predictive 

performance approaching that of state-of-the-art gradient boosted tree models. The method 

combines a base GLM with a residual learner, thereby enhancing predictive accuracy, and 

leverages transformed SHAP values to recover parameter-level corrections to the underlying 

linear model. We further demonstrated how the IBLM can be incorporated into an iterative 

modelling process aimed at maximising the variance explained by the GLM component. 

 



 

IBLM improves on GLMs by delivering higher predictive accuracy, and on neural networks 

and other ML models by being easier to fit and operationalize, while retaining a transparent 

linear representation compatible with existing rating structures. SHAP-corrected betas 

provide risk insights, supporting more accurate pricing for established products as well as 

data-driven pricing in new or niche markets where prior actuarial knowledge may be limited. 
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Appendices 

Appendix 1 – Post-hoc capping and affine correction 

If the full IBLM were deployed, large departures from the underlying GLM would not be 

desirable. We therefore cap the booster’s multiplicative correction after training. For a trim 

level  we define a clip function:  𝑝∈[0, 1)

 𝑐𝑙𝑖𝑝
𝑝
𝑥( )≔𝑚𝑖𝑛{𝑚𝑎𝑥 𝑥, 1 − 𝑝{ }, 1 + 𝑝}

The clip function can be extended so that the left tail and right tail clipping are asymmetrical. 

Then we can apply the post-hoc capping and ensure the average correction of the booster has 

a mean of 1 in the following way: 

 𝑦
~
𝑏𝑜𝑜𝑠𝑡𝑒𝑟

𝑥
𝑘( ) = 𝑐𝑙𝑖𝑝

𝑝
𝑥( )

1
2
𝑖=1

𝑛

∑ 𝑐𝑙𝑖𝑝
𝑝
𝑥
𝑖( )

The normalizing constant in the denominator can be trained as an additional model parameter 

from  and used at inference time. We note that the closer the trim value is to 0, the worse the 𝐿

predictive performance of IBLM is, ultimately matching GLMs performance at . 𝑝 = 0

We can visualize a relationship between the base GLM and the clipped ensemble with a 

scatter plot. As  decreases, points converge toward the diagonal forming a funnel shape, 𝑝

allowing less deviation from the GLM. The scatter can also be colored by a predictor which 
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will reveal which one of them was the biggest driver of the deviations from the base model. 

(NA indicates a case of unrestricted deviations from the base model) 

 

The series of AvE charts show that as  gets closer to zero, the closer IBLM predictions 𝑝

converge to the GLMs. This is a desirable property from a practical perspective because it 

allows a smooth transition from the GLM to IBLM by increasing  through time as 𝑝

stakeholders gain confidence in application of the ML model.  

 



 

 

 

Instead of applying post-hoc capping, one could achieve the same effect during training by 

modifying the booster’s target through an affine transformation, thereby constraining its 

deviations from the GLM’s predictions. 

 

Appendix 2 - R code 

In order to reproduce the results and graphs from this manuscript, please refer to this GitHub 

repository github.com/Karol-Gawlowski/IBLM_BHP and the script paper_code.R 

 

 

http://github.com/Karol-Gawlowski/IBLM_BHP

