
Split Dataframe into: 'train', 'validate', 'test'
Source:R/split_into_train_validate_test.R
split_into_train_validate_test.RdThis function randomly splits a data frame into three subsets for machine learning workflows: training, validation, and test sets. The proportions can be customized and must sum to 1.
Usage
split_into_train_validate_test(
df,
train_prop = 0.7,
validate_prop = 0.15,
test_prop = 0.15,
seed = NULL
)Arguments
- df
A data frame to be split into subsets.
- train_prop
A numeric value between 0 and 1 specifying the proportion of data to allocate to the training set.
- validate_prop
A numeric value between 0 and 1 specifying the proportion of data to allocate to the validation set.
- test_prop
A numeric value between 0 and 1 specifying the proportion of data to allocate to the test set.
- seed
(optional) a numeric value to set the random no. seed within function environment.
Value
A named list with three elements:
- train
A data frame containing the training subset
- validate
A data frame containing the validation subset
- test
A data frame containing the test subset
Details
The function assigns each row to either "train", "validate" or "test" with the probability defined in the function.
Because each row is assigned a bucket independently, for very small datasets the proportions may not be as desired. This should not be an issue as data used for `iblm` must be reasonably large.
Examples
# Using 'mtcars'
split_into_train_validate_test(
mtcars,
train_prop = 0.6,
validate_prop = 0.2,
test_prop = 0.2,
seed = 9000
)
#> $train
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
#> Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
#> Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#>
#> $validate
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#>
#> $test
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
#> Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#>