
Obtain Booster Model Beta Corrections for tabular data
Source:R/data_beta_coeff_functions.R
data_beta_coeff_booster.RdCreates dataframe of Shap beta corrections for each row and predictor variable of `data`
Value
A data frame with beta coefficient corrections. The structure will be the same dimension as `data` except for a "bias" column at the start.
Examples
df_list <- freMTPLmini |> split_into_train_validate_test(seed = 9000)
iblm_model <- train_iblm_xgb(
df_list,
response_var = "ClaimRate",
family = "poisson"
)
explainer_outputs <- explain_iblm(iblm_model, df_list$test)
data_booster <- data_beta_coeff_booster(
df_list$test,
explainer_outputs$beta_corrections,
iblm_model
)
data_booster |> dplyr::glimpse()
#> Rows: 3,764
#> Columns: 8
#> $ bias <dbl> -0.04750277, -0.10246549, -0.03115642, -0.05418567, -0.0303…
#> $ Area <dbl> -0.0111900549, 0.0000000000, 0.0035772556, 0.0050815106, -0…
#> $ VehPower <dbl> -0.0024568909, -0.0016454663, 0.0026447953, 0.0018707892, 0…
#> $ VehAge <dbl> -0.2105023563, -0.0411032960, 0.0093703484, 0.0057610178, 0…
#> $ DrivAge <dbl> 5.773106e-05, 1.018574e-02, -7.892709e-04, 1.405477e-03, -8…
#> $ BonusMalus <dbl> -0.0004004939, 0.0011334786, -0.0011458378, -0.0006809373, …
#> $ VehBrand <dbl> -0.095233344, 0.000000000, -0.017026167, -0.018466003, -0.0…
#> $ VehGas <dbl> 0.0000000000, 0.0000000000, 0.0000000000, -0.0055609480, 0.…